Python

The pythons listed in the table below are available. As they are all provided as packages that come with the operating system, you do not need to set up the environment with module files.

Version Module File Name SystemA System B/C System G Cloud System Notes
2.7 none + + + + Command Name: python2.7, pip2.7
3.6 none + + + + Command Name: python3.6, pip3.6
3.8 none + + + + Command Name: python3.8, pip3.8
3.11 none + + + + Command Name: python3.11, pip3.11

+ : Available for all users
- : Not available

You can check the libraries installed by default with the pip command. If you need additional packages, you can use the pip command to install additional packages in your HOME directory.

##When you display a list of installed packages in a python 3.8 environment 
$ pip3.8 list
Package                      Version
---------------------------- ----------
absl-py                      1.3.0
asgiref                      3.6.0
astunparse                   1.6.3
...

The following Python packages have been installed in a specific python environment in advance. 以下のPythonパッケージは予め特定のpython環境にインストールしてあります。 You need to load the module file to use.

Python System Type Package Version Library Module File Notes
python3.11 A/B/C CPU TensorFlow 2.15.0 MKL 2023.2 tensorflow/2.15.0.py311_intel-2023.2 Intel Extension for TensorFlow
python3.11 A/B/C CPU TensorFlow 2.14.0 MKL 2023.2 tensorflow/2.14.0.py311_intel-2023.2 Intel Optimized AVX512 version
python3.11 A/B/C CPU PyTorch 2.2.0 MKL 2023.2 pytorch/2.2.0.py311_intel-2023.2 Intel Optimized AVX512 version
python3.11 G GPU PyTorch 2.2.0 CUDA 12.1 pytorch/2.2.0.py311_cuda-12.1 GPU version
python3.8 A/B/C CPU TensorFlow 2.11.0 MKL 2022.3 tensorflow/2.11.0.py38_intel-2022.3 Intel Optimized AVX512 version
python3.8 A/B/C CPU MXNet 1.6.0 MKL 2022.3 mxnet/1.6.0.py38_intel-2022.3 MKL-compliant version
python3.8 A/B/C CPU PyTorch 1.13.1 MKL 2022.3 pytorch/1.13.1.py38_intel-2022.3 intel extension for pytorch Available
python3.8 G GPU TensorFlow 2.11.0 CUDA 11.2 tensorflow/2.11.0.py38_cuda-11.2 GPU version_TensorRT Available
python3.8 G GPU MXNet 1.9.1 CUDA 11.7 mxnet/1.9.1.py38_cuda-11.7 GPU version
python3.8 G GPU PyTorch 1.13.1 CUDA 11.7 pytorch/1.13.1.py38_cuda-11.7 GPU version

If you need additional packages, you can install additional packages in your HOME directory with the pip command. Example of adding flask:

pip install --user flask

Miniforge, Python packages available, is installed, a set of Python packages available. See Miniforge for more information.